Code: 20IT4501E

III B.Tech - I Semester – Regular / Supplementary Examinations NOVEMBER 2023

DATA MINING (INFORMATION TECHNOLOGY)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max.				
					Marks				
	UNIT-I								
1	a)	Explain why Data mining is a single step in	L2	CO1	7 M				
		KDD Process.							
	b)	Describe about various Data Mining	L2	CO1	7 M				
		functionalities in brief.							
OR									
2	a)	Define Data mining and explain about data	L2	CO1	7 M				
		mining on what kind of data?							
	b)	Explain about the major issues in data	L2	CO1	7 M				
		mining.							
		UNIT-II							
3	a)	Explain about measuring the dispersion of	L3	CO2	4 M				
		data.							
	b)	What is preprocessing? Explain the forms of	L2	CO1	10 M				
		Pre-processing.							

				O	R						
4	a)	Interp	ret basic	Statistical	Descr	riptions of	L3	CO2	7 M		
		data.									
	b)	List a	nd Explair	n Data Clear	ning te	chniques.	L2	CO1	7 M		
UNIT-III											
5	a)	Define the terms Frequent Itemset, Closed						CO3	4 M		
	Frequent Itemset, Support and Confidence.										
	b) Illustrate the procedure of FP-Growth						L3	CO3	10 M		
		algorithm with example.									
	1				R			T			
6	Interpret the procedure of Apriori algorithm. L3 CO3 14 M								14 M		
			•	ent item set							
	_			-sup=2 and	mın_c	cont=/0%.					
	`	(Database from Table1)									
				onal Datab	oase	from All					
	Electronics										
			TID	List of It	tems	_					
			T100	I1, I2, I5							
			T200	I2, I4							
			T300	I2,I3							
			T400	I1,I2,I4							
			T500	I1, I3							
			T600	I2,I3							
			T700	I1,I3							
			T800	11,12,13,15							
			T900	I1, I2, I3							

		UNIT-IV					
7	a)	Explain how prediction is different from	L3	CO4	7 M		
	ŕ	classifications and illustrate classification					
		with examples.					
	b)	Describe Decision Tree Induction algorithm	L3	CO4	7 M		
		with suitable example.					
	•	OR					
8	a)	Explain the algorithm of Naive Bayes	L3	CO4	7 M		
		Classification with example.					
	b)	With the help of diagram explain Bagging	L3	CO4	7 M		
		and Boosting.					
	T	UNIT-V					
9	a)	Compare and contrast the differences	L4	CO5	7 M		
		between Agglomerative Vs Divisive					
		Clustering.					
	b)	Illustrate partitioning methods with an	L4	CO5	7 M		
		example.					
	1	OR					
10	Sup	pose that the data mining task is to cluster	L4	CO5	14 M		
	points (with (x,y) representing location) into						
	thre						
	A20	(2,5), A3(8,4), B1(5,8), B2(7,5), B3(6,4),					
	C1((1,2), C2(4,9). Use K-means algorithm to					
	form three clusters.						